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® [nvestigation into sources of model error
® Conclusions

Results from: Fogt, R.L, and D.H. Bromwich, 2007: Atmospheric moisture and cloud
cover characteristics forecast by AMPS. Wea. Forecasting, provisionally accepted.
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Both stations show a positive bias that increases up to ~ 200 hPa, the mean height of

the tropopause. The correlation ranges from 0.4 — 0.8 and is highest at ~200 hPa with
another peak at 700 hPa at McMurdo. Skill decreases slightly with forecast hour.
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New CF Algorithm

Old CF Algorithm
mean obs

location season #obs CE bias correlation| bias correlation| p-level

McMurdo summer 1688 0.620 -0.137 0.394 | -0.050 0.394 0.000
Williams Field | summer 1090 0.632 -0.201 0.345 | -0.113  0.342 0.000
Pegasus South | summer 419 0.698 -0.136 0.364 -0.021 0.369 0.000

McMurdo fall 505 0.576 -0.087 0.459 0.009 0.453 0.001

McMurdo winter 445 0.358 0.028 0.419 0.105 0.389 0.013

McMurdo spring 802 0.638 -0.038 0.428 0.050 0.457 0.000

South Pole | summer 1652 0.569 -0.250 0427 | -0.129 0.455 0.000
South Pole fall 851 0.449 0.048 0.506 0.178 0.428 0.000
South Pole winter 663 0.416 -0.092 0.481 0.071 0.468 0.000
South Pole spring 765 0.595 -0.128 0.566 | -0.002 0.534 0.000

foa toa
CF=1= 2 (0.1CLWP +0.0735CI WP) CF =1 = 2 (0.075CLWP +0.170CI WP)
Ve old Ve new

® Modifying CF algorithm produces a near zero bias in roughly all
seasons and for both McMurdo and South Pole
® (Correlation does not improve suggesting changes to the cloud liquid
water content and / or timing of the clouds is needed to improve CF
variability

Nonetheless, AMPS does a good job predicting overall CF amount using
new algorithm
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B dashed lines), the
= performance for clear is
= toughly equivalent to
overcast conditions,
while the decreasing skill
with forecast hour for
partly cloudy conditions
IS removed
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High Clouds in Pseudo Satelljte
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CF Pseudo Satellite
=@rma nce

2 W) Iow CE bias, but problems accurately
mr deling low cIouds?

— |agnost|c CE algorithm (especially new algorithm) is
- -more dependent upon CICE content than CLW

: ‘~ = Observations at McMurdo and South Pole indicate
: ==hignclouds dominate total CF

= Low CE correlation is likely a combination of
— Insufficient CLW (supercooled water / mixed
phase clouds) in the model and inaccurate
timing of cloud movement




e Mean summer CICE (top) and
in AMPS given
the 2m relative humidity >
80%
Model depicts CICE content

everywhere, but in the
and over the

Observations, however, do
indicate the presence of
supercooled liquid water in
clouds at Pole (mostly in Dec —
Jan) as well as on the Antarctic
Peninsula (also in summer).
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J l’ru* IS IEXCasSIVe mojsture in the model near the
O poagse with relative humidity correlations around
J 4
J ‘\_N S predicts high cloud movement and coverage well,
8ading to a low bias in the CF, especially with a
“CI(\)/\CIIIIIIECI algorithm that gives much more weight to

Improvements are needed in the representation of
supercooled liquid water / mixed phase clouds in the
model in order to better predict low cloud coverage,
which will likely improve the CF correlation

® Nonetheless, the prediction of and
iIn AMPS is that for
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