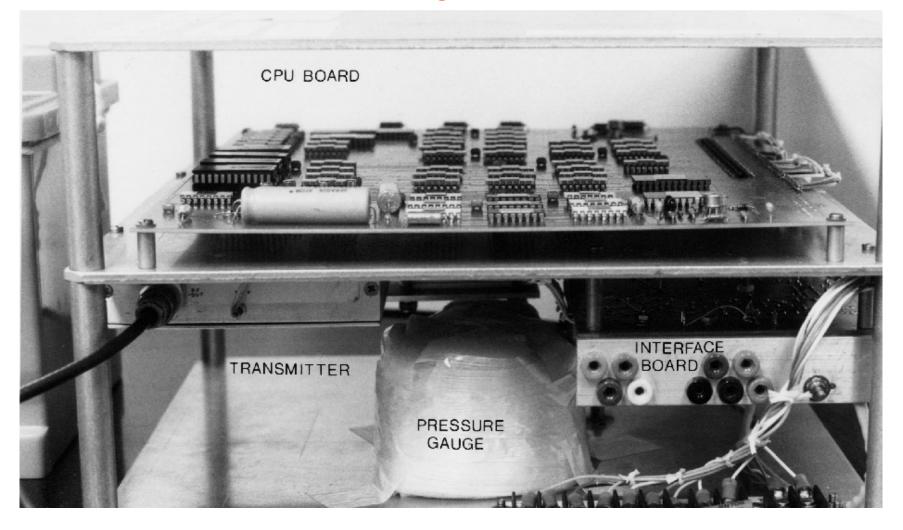
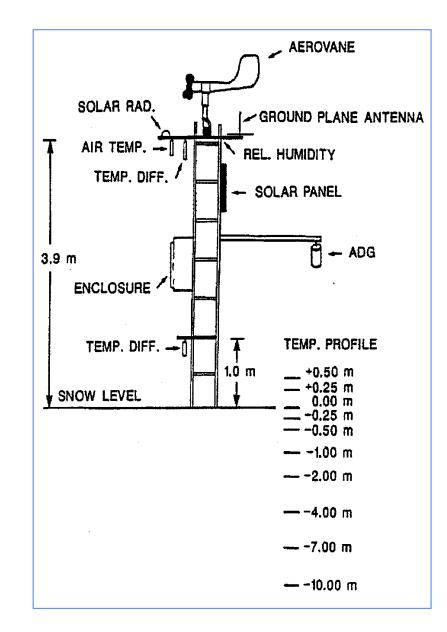

Legacy Calibration of the Automatic Weather Station Model 2 of the United States Antarctic Program

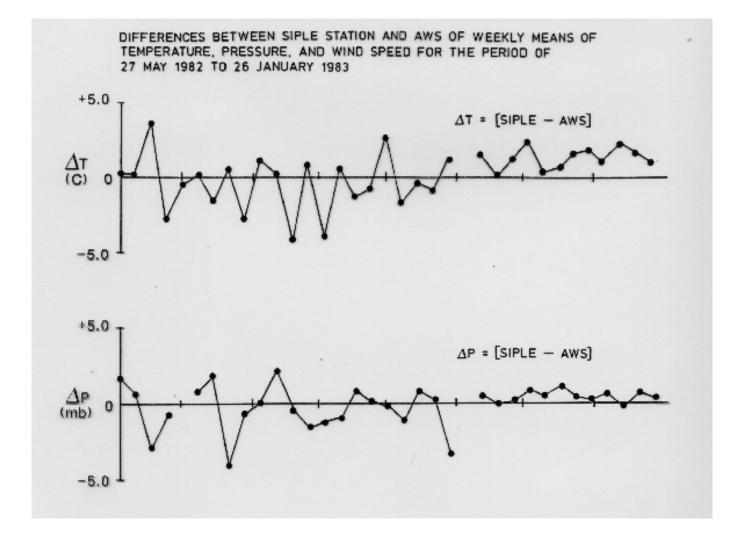
G. A. Weidner², J. E. Thom¹, and M. A. Lazzara¹ ¹Antarctic Meteorological Research Center Space Science and Engineering Center ²Deparment of Atmospheric and Oceanic Sciences University of Wisconsin-Madison Madison, WI, USA


Stanford electronics – 1978

AWS2A Model of the Stanford AWS


Paroscientific Gauge

AWS2B design UW SSEC



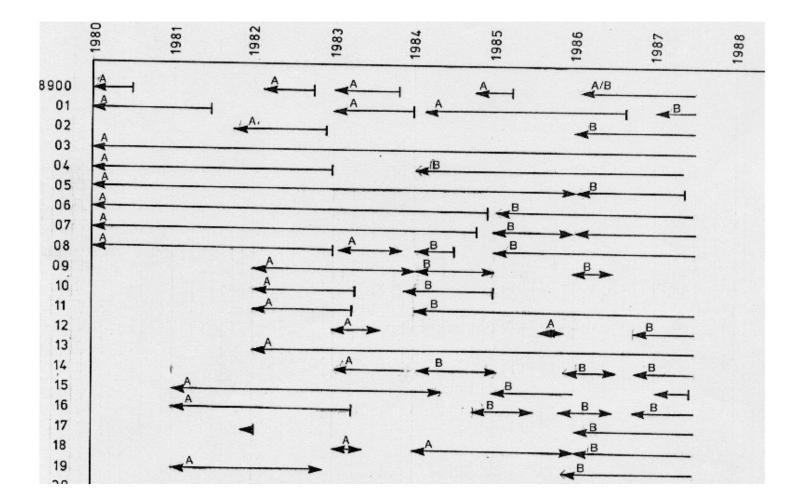
The AWS2B version

- The UW AWS2B as it was designed in the mid 1980's and is in use today.
- It also included an acoustic depth gauge (ADG) that measures the distance to the snow surface, thereby giving a measurement of net snow accumulation.
- An amplifier board was designed in 1980 to enable measurement snow temperature profiles from thermocouples.

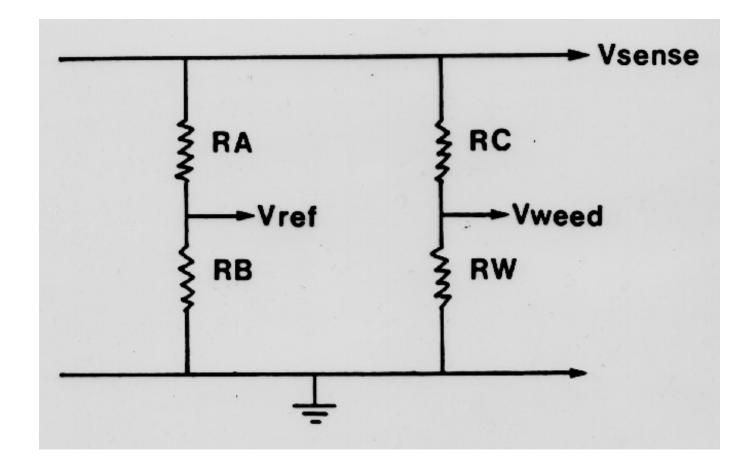
Reason for AWS

AWS Hardware check

II. HARDWARE SETUP AND CALIBRATION	
A. AWS SETUP 1. ANALOG INPUTS 2. DIFFERENTIAL INPUTS 3. DIGITAL INPUTS 4. TRANSMISSION CYCLE TYPE 5. TRAMSMISSION CYCLE TIME 6. NOMINAL AMPIFIER GAIN	
8. A/D REFERENCE VOLTAGE 9. A/D FULL SCALE VOLTAGE 10. A/D OUTPUT FOR 0 VOLTS 11. AMPLIFIER SUPPLY VOLTAGE 12. AMP NEGATIVE SUPPLY 13. A/D REFERENCE RESISTOR 14. A/D ZERO OFFSET RESISTOR 15. 1 MHZ OSCILLATOR 16. TRANMITTER FREQUENCY 17. A/D STABILITY	CPU BOARD INTEREACE BOARD BOARD BROK TYPE RAM TYPE SOFTMAR FOMER SUD ROMER SUD RAM CAPACT
	- A D


AWS2A Measurements

- Pressure counts for 5.120 seconds (two counts)
- 1 MHz reference oscillator for 0.1 mb accuracy
- Temperature Ratiometric with precision resistor
- Accuracy of +/- 0.5 C over temperature range
- Wind speed to 0.25 meters per second
- Wind direction to +/- 1.5 Degrees
- Humidity (HMP14) +/- 5% at best


AWS2B Measurements

Variable	Sensor	Specifications
Air Pressure	Paroscientific	Range: 0 to 1100 hPa
	Model 215 A	Resolution: 0.050 hPa
		Accuracy: +/- 0.2 hPa
		(0.2 hPa/year long term drift)
Air Temperature	Weed PRT	Range: to -100 C minimum
	Two-wire bridge	Resolution: 0.125 C
		Accuracy: +/- 0.5 C
Humidity	Vaisala HMP-35A (and	Range: 0 to 100%
	other models)	Resolution: 1.0 %
		Accuracy: +/- 5.0 % down to -55 C
		Corrections possible for lower
		temperatures
Wind Direction	10 K Ohm pot.	Range: 0 to 355 Degrees
		Resolution: 1.5 Degrees
		Accuracy: +/- 3.0 Degrees
Wind Speed	Bendix/Belfort	Resolution/Accuracy: 0.25 +/- 0.5 m/s
	RM Young	Resolution/Accuracy: 0.20 +/- 0.5 m/s
	Hydro-Tech	Resolution/Accuracy: 0.33 +/- 2%
Temperature	Thermocouple	Resolution: 0.06 C
String	Two junction	Accuracy: +/- 0.125 C
	Copper-Cons.	

AWS2A retirement

Weed temperature bridge

Temperature calibration

- A fixed calibration point for the AWS was chosen to be 0.0 C.
- A 1000 ohm (at 0.0C) PRT was selected as the temperature sensor.
- In order to set the PRT to 0C for a particular AWS, a 0.05% resister was substituted for the PRT and the AWS temperature output was observed.
- The output was set to 0C by setting an offset value in the AWS onboard software that compensated for the variation of the resistors in the bridge from their stated values.
- Typical "errors" from the PRT calibration table were less than 1.0 C over the temperature range from 25C to -75C.

AWS Temperature sensors

Sensor \rightarrow	Weed PRTD	HMIP45	HMP155	CSIRTD
AWS sensor	AWS2's	AWS2's CSI AWS	CSI AWS	CSIAWS
Alpha	0.003902	0,00385	0.00385	0.00375
Accuracy at 0.0C	+/- 0.250 C	+/- 0.03 C	+/- 0.03 C	+/- 0.03 C
Valid Temperature Range	Calibrated over the temperature range -75C to 20C	Calibrated over the temperature range -40C to 20C	Calibrated over the temperature range -80C to 20C	Calibrated over the temperature range -50C to 50C
Accuracy over Temp Range	+/- 0.5 C	+/- 0.5C	+/- 0.5C	+/- 0.5 C

Remember that the stated accuracy does not account for errors due to improper circuit set up or the issue of radiation shields.

Summary for Weeds

- All Weed temperature probes returned in the last three years are within the stated +/-0.5C accuracy at 0.0C
- All Weeds will be matched to respective AWS electronics and cycle down to -60C in an environmental chamber.

	Calibration					
Chamber		AWS				
Т	Resistance/	Temperature				
	Temperature					
22 C	1000/0 C	-0.125 C				
+/-0 C	1000/0 C	0.000 C				
-20 C	1000/0 C	0.000 C				
-40 C	1000/0 C	0.125 C				
-60 C	1000/0 C	0.250 C				

Sample Table: Byrd AWS 0.0 C

Temperature calibration in chamber

Temperature In Chamber	Resistance temperature +/- 0.125 C	Observed AWS T	Resistance temperature +/- 0.250 C	Observed AWS T
22 C	1000 / 0 C	-0.125 C	903.6 /-24.25	-25.000 C
+/-0 C	1000 / 0 C	0.000 C	903.6 /-24.25	-25.000 C
-20 C	1000 / 0 C	0.000 C	903.6 /-24.25	-24.875 C
-40 C	1000 / 0 C	0.125 C	903.6 /-24.25	-24.750 C
-60 C	1000 / 0 C	0.250 C	903.6 /-24.25	-24.750 C

Humidity

- Vaisala series of humidity probes
- HMP 14 1979-1982
- HMP 31UT 1983-1989
- HMP 35A 1989-1999
- HMP 45A/D 1999-2009
- HMP155 2009 -

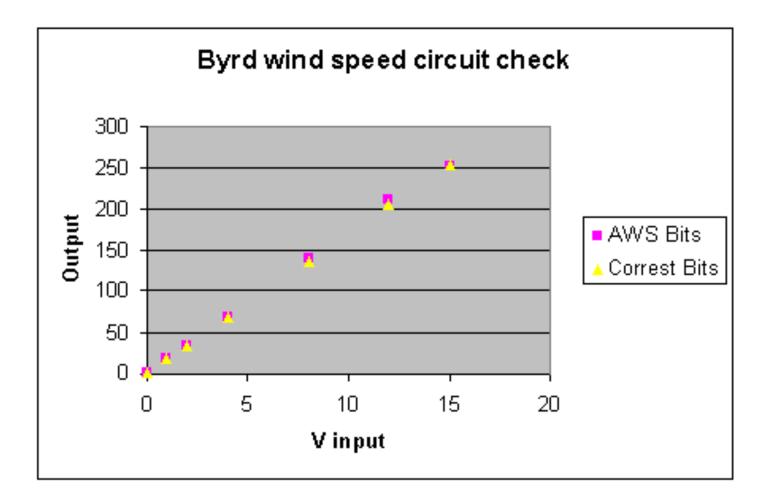
HMP45

- •RH Measuring range: 0.8 to 100% RH
- •RH Output scale 0 to 100% RH equals 0 to 1 VDC
- •RH Accuracy at +20 C against factory references: +/-1% RH
- •Field calibration against references: +/-2% RH (0 to 90 %RH);
- +/-3 %RH (90 to 100% RH)
- •RH Typical long-term stability:< 1% RH / year
- •RH Temperature dependence: +/-0.05% RH/ C
- •RH Response time (90% at +20 C): 10s with membrane filter
- Each model improved on performance. Recalibrated a HMP35A deployed on Ross Ice Shelf for three years ... within 2% of original calibration.

Humidity Probe Summary

Probe	Power	Drain	Op	Accuracy	T coeff.	Drift
			Temp			
HMP31UT	3.6 VDC	13ma	-40 to	+/- 2% to	3%	Less
	regulated		80C	80%	max	than 2
	from			+/- 3%	over	% per
	AWS			from	temp	year
				80% to	range	`
				100%		
HMP35	7-35	<4ma	-40 to	+/- 2% to	+/- 0.04	Less
	VDC		60C	90%	% per	than
				+/- 3%	deg T	1% per
				from 90%	or 4%	year
				to 100%	max	
HMP45	7-35	<4ma	-40 to	+/- 2% to	+/- 0.05	Less
	VDC		60C	90%	% per	than
				+/- 3%	deg T	1% per
				from 90%	or 5%	year
				to 100%	max	

- One returned HMP31UT from Marilyn this season: Lab reference HMP45A read 37% Marilyn HMP 31UT read 40% (this is after 25 years)
- HMP35A summary for 2011 and 2012 for room temperature only.
- HMP 35A # HMP45 reference reads 42%
- 1:47
- 2:44
- 3:45
- 4: BAD
- 5:44
- 6:43
- 7: BAD
- 8:43
- 9:45
- Yet to be done is a calibration at over the temperature range of 20C down to -60 C.
- Note that below -40C these probes act more like a temperature probe

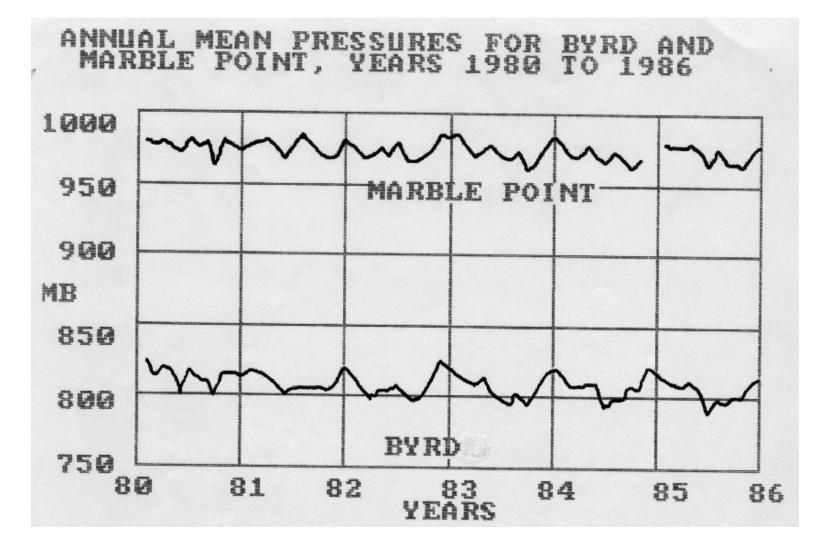

Wind Speed and Direction

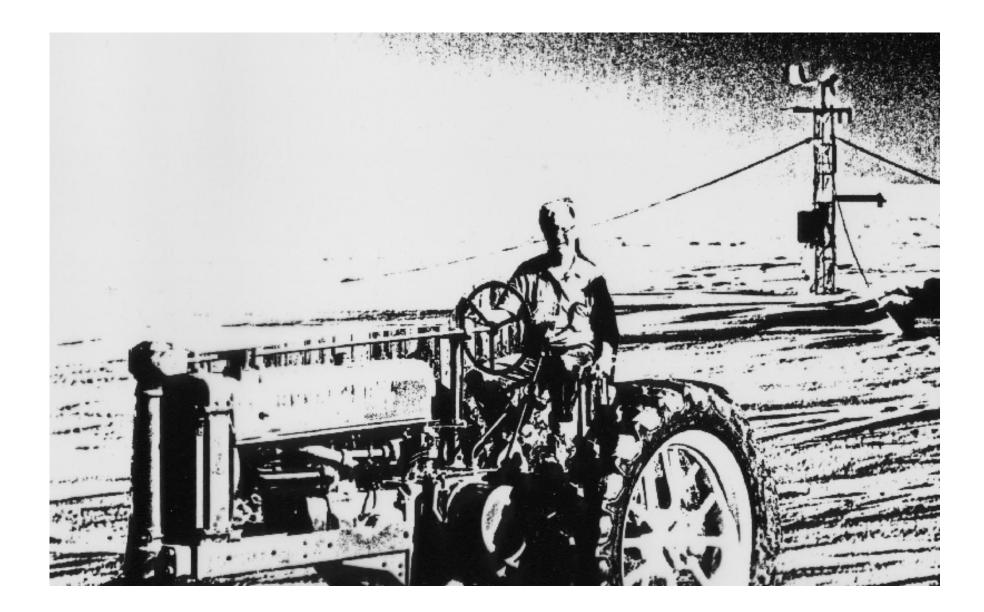
- Wind Sensors for the AWS2 stations all required a voltage output.
- Wind sensors typically failed at various rates depending on their location.
- All CPU board A/D circuits were "identical" so that wind sensors could be swapped without regard to AWS unit.

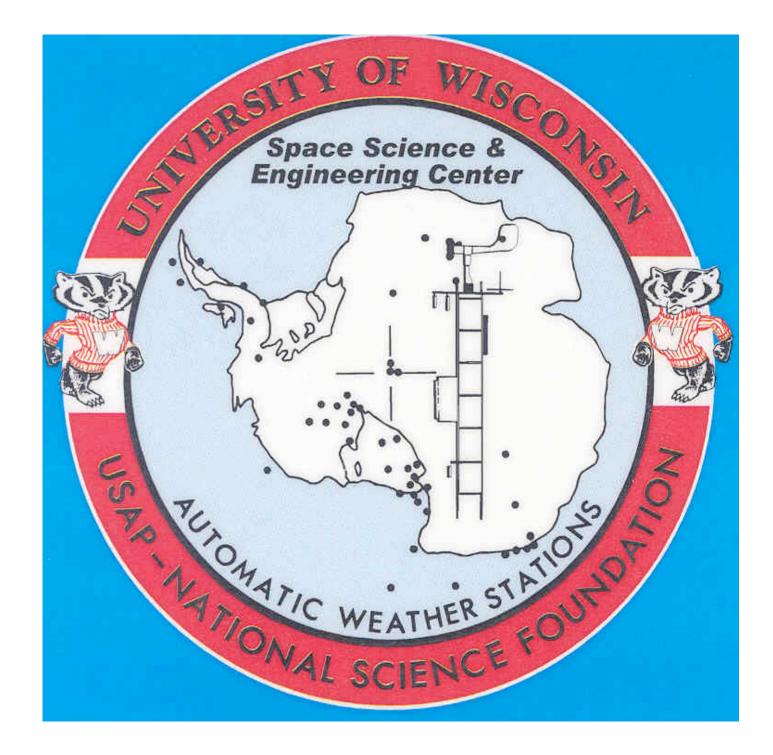
WS calibration for Byrd

/ input	V A/D	AWS Bits	zero offset insta Correct Bits											
mpax			0011000 0100	ľ				B	yrd w	ind spe	ed circui	t check	(
0	0	0	0											
1	0.067	17	17			30	0 -							
2	0.134	34	34			24								
4	0.268	70	69			25								
8	0.536	140	137			 20	o 🕂				<u> </u>			
12	0.804	211	206										- AM	/SBits
15	1.005	252	255			0 utbut				A			🔺 Cor	rest Bits
						Ŭ 10	0 🕂							
14.3	0.957	251	245			L.	io 🗕		<u>n</u>					
14.4	0.964	252	247					<u>n</u>						
							0 🕂			1				
							0		5	10	15	20		
	Note that	the number	of bits output l	y the AWS	does not					V inpu	ł			
	reach the	full scale v	alue of 255 or H	IEX FF.							•			
			o offset is 1% (8											
			y for the A/D or			S								
) agrees with th											
	That is fu	ll scale of 1	volt is 0.964 + 0	.036 = 1.00	VDC									
			nd the maximu			assumi	ng cal	librat	ted Aei	rovane w	ould be 2%	at 14.4	volts or	utput
	which is v	within specs	for the Bendix	aerovane.										

Below is the simulated wind speed calibration for the AWS2B form Byrd Station.




Paroscientific 215A


PERFORMANCE
MODEL NO:
215 AW
223 AW
230 AW
245 AW
REPEATABILITY (AVERAGE ABOUT MID-POINT)
HYSTERESIS (AVERAGE ABOUT MID-POINT)
ACCELERATION SENSITIVITY
TEMPERATURE NULL SHIFT
(AVERAGE DEVIATION OVER 100°F EXCURSION ABOUT TURN AROUND POINT)
TEMPERATURE SENSITIVITY SHIFT
VIBRATION SENSITIVITY
SUPPLY VOLTAGE SENSITIVITY NEGLIGIBLE
CHARACTERISTICS
NOMINAL FREQUENCY AT ZERO PRESSURE
NOMINAL FREQUENCY AT FULL PRESSURE
SIZE (EXCLUDING FITTINGS)
WEIGHT
POWER REQUIREMENTS
OUTPUT SIGNAL IS A NOMINAL SQUARE WAVE OF 4 VOLTS AMPLITUDE PEAK TO PEAK, CAPACITIVELY COUPLED, WITH SOURCE IMPEDANCE LESS THAN 750 OHMS. NOTE: WIDE OPERATING VOLTAGE RANGE IS PERMITTED BY USE OF A CURRENT DEVICE IN THE POWER SUPPLY CIRCUITRY. OUTPUT POWER STAGE IS NOT CURRENT LIMITED AND WILL DRAW CURRENT AS REQUIRED BY THE LOAD ON THE OUTPUT.
ENVIRONMENTAL
OVERPRESSURE
"OPERATIONAL TEMPERATURE RANGE
"IF TRANSDUCER IS OIL FILLED BY MANUFACTURER MINIMUM OPERATING TEMPERATURE WILL BE
OPERATIONAL VIBRATIONAL SPECTRUM
(CAUTION: DO NOT EXCEED 500 HZ UPPER FREQUENCY LIMIT)

- The only pressure sensor used for all AWS2 stations has been the Paroscientific model 215A pressure transducer. The 215A coupled with the AWS2 provided an initial accuracy of +/-0.1 hPa. There have been four generations (my classification) of 215As, with each generation achieving better accuracy and lower long term drift. The long term drift results in an error in pressure with a negative bias due to out gassing in the reference vacuum chamber and water vapor migration through sealants in early models (later generations solved this problem).
- The output signal is a frequency (nominal 40 KHz) that is a function of both the air pressure and the temperature. Early models required a separate temperature measurement which the AWS2 provided with a Weed PRT laid against the outer case of the 215A. Later 215A models incorporated an onboard temperature sensor at the point of the pressure sensor. However, all AWS2B units continued to use the Weed PRT temperature to compute the pressure from the observed output frequency of the 215A.
- The early 215A models (the original 20 or so gauges purchased for the AWS2A units) that have been returned for calibration have a long term drift of between 2 and 6 hPa over 30 years. Second and third generation models have shown a drift of around 2 to 3 hPa over 15 to 20 years. The latest generation of 215A have less than 2 hPa of drift observed over 10 years.

Early pressure checks

