What can AMPS (& ERA-Interim) tell us about the warming in West Antarctica?

Julien Nicolas & David Bromwich

Polar Meteorology Group, Byrd Polar Research Center, The Ohio State University

> AMOMF Workshop 10-12 June 2013

Outline

 Reconstructing the Byrd temperature record (1957-present)

Thank you Matthew, Linda & George!!

- 2. Understanding the results: Are things different between Byrd and WAIS?
- 3. Improving the Byrd record: Can we account for the changes in sensor elevation?

Why Byrd Station matters

West Antarctic data void

Byrd's temperature footprint

ERA-I temperature correlation with Byrd

Temperature trends: Who to believe?

Byrd record & data infilling

Results: Strong warming since 1957

- **1958-2010** trend: 0.43 ± 0.23 °C per decade
- Equivalent to 2.3 ± 1.3 °C in 52 years

WAIS Divide warming later than Byrd?

Steig and Orsi (2013)

Can we explain the difference between Byrd and WAIS?

Sharp precipitation contrast across the ice divide

Annual precipitation (1979-2012)

Annual precipitation (2009-2012)

Byrd vs WAIS Divide temperature differences

Byrd: 1530 m asl

WAIS Divide: 1766 m asl

 $\Delta H = 236 \text{ m}$

Byrd vs WAIS Divide temperature differences

Composite maps of T2m anomalies

Composite maps of Z500 anomalies

Large variability in Western West Antarctica

Annual standard deviations from ERA-Interim (1979-2012)

Conclusions (I)

- Byrd and WAIS are in a region of large meteorological gradients due both to topography and atmospheric circulation
- At this point, we cannot rule out that the recent warming was delayed at WAIS compared to Byrd
- A true validation of Byrd instrumental temperature record needs a borehole <u>at Byrd!</u>

Changes in sensor height above sfc 3m **Thermometer** shelter (6 ft) Photo: Lee Welhouse Byrd Station in Sept. 1957. From Morris and Peters (1960)

Surface temperature stratification at Byrd

Conclusions (II)

- In summer, likely minimal impact of the changes in sensor elevation
- In non-summer months, raising the sensor (2m→3m) may have slightly amplified the long-term warming. Correcting for this effect would likely lead to a <u>reduction in the</u> <u>warming</u>.
- This correction will be a <u>challenging</u> undertaking and would require a detailed documentation of the changes of the sensor height.
- Uncertainty in the necessary temperature correction:
 - Initial estimates from AMPS but uncertain. Observed temperature profiles are the key to resolving this issue
 - The stratification is certainly weaker betw. 2 and 3 m than betw.
 the surface and 2m

Questions?

Additional information:

Bromwich, D. H., J. P. Nicolas, A. J. Monaghan, M. A. Lazzara, L. M. Keller, G. A. Weidner, and A. B. Wilson, 2013: Central West Antarctica among the most rapidly warming regions on Earth. *Nature Geoscience*, 6, 139-145.

This work was supported by NSF through grant ATM-0751291.

