Evaluating the Antarctic Observational Network with AMPS

Karin Bumbaco¹, Greg Hakim², Guillaume Mauger¹, Natalia Hryniw², Eric Steig³ University of Washington

- 1: Joint Institute for the Study of Atmosphere and Ocean
- 2: Department of Atmospheric Sciences
- 3: Department of Earth and Space Sciences

June 11, 2013

This work is funded by NSF Grant #1043090.

Motivation

- Environmental observing networks are often subjective
 - Monitoring goal may never be clearly defined
 - Grow organically over time (perhaps with available funding)
- Practical considerations often constrain the network
 - Access to power, land ownership issues, accessibility for maintenance, where people live (e.g., US Cooperative Observer Program), etc.
- In Antarctica, harsh weather conditions amplify difficulties
- Objective optimal network design method (Huntley and Hakim, 2009; Mauger et al. [in review]) to meet monitoring goal(s) cost effectively
- Evaluate the current network as a first step

Evaluate current network

- Examine spatial station influence through a correlation length scale
- 15 km Antarctic Mesoscale Prediction System (AMPS) 00Z analysis for 2008-2012 (NCAR)
- Daily surface observations (NCAR)
 - Focus on surface pressure and 2 meter temperature
- Basic quality control on observations
- Removed seasonal cycle in temperature in AMPS and obs
- Divided the observations into those that reported for at least 75% (CD75) and at least 90% (CD90) of the period
- Analysis separated into 3 regions

Temperature Spatial Correlation: obs vs. **AMPS**

1000

2000

0.8

0.6

0.4

0.2

-0.2

Temperature Correlations

 Test using temperature observations that are not assimilated into AMPS (< 1% of the time)

Pressure Spatial Correlation: obs vs. AMPS

- Even better agreement between observations and AMPS
- Much higher correlations than temperature
- Correlations decrease more quickly for the Peninsula site

AMPS Temperature Correlation

East Antarctica has the longest correlation length scale,
suggesting that the area needs fewer stations per unit area

Correlation Length Scale

- Longer CLS in summer and in east Antarctica
- Higher station density needed in west Antarctica and Peninsula where CLS are shorter

Variance Explained by Current Network

- For CD75
- Closest AMPS grid pt to station location
- Variance in temperature explained at each AMPS grid point by a multiple linear regression on 46 stations

Variance Explained by Current Network

- For CD90
- Larger coastal influence in winter; not isentropic
 - Katabatic winds
- Larger interior influence in summer
 - Weaker inversion
- Coverage improves substantially as we move to monthly time scales
- Still, there are gaps in the current network

Pressure Variance Explained

- CD90
- Each pressure station has a larger influence; as expected

Conclusions

- Pressure has much higher correlations throughout the continent compared to temperature
- AMPS represents the temperature and pressure correlations well over the continent; ok to use for network design
- East Antarctica has the longest temperature correlation length scales; implications for station density
- Regions with short length scales require higher station density
- There are differences in correlation length scale seasonally
 - Longer in winter on coast; longer in summer in interior
- Gaps in the current network coverage, particularly on daily time scales, motivate network design

Thank You!

Karin Bumbaco

kbumbaco@uw.edu

Greg Hakim, Natalia Hryniw, Guillaume Mauger, Eric Steig

3-month Seasonal T Variance Explained

• CD90; daily

3-month Seasonal T Variance Explained

• CD75; daily

More info on assimilation statistics

• For temperature; and had to be in CD75 set

Station Name	ID	# days valid T	# days assimilated	Fraction assimilated
Base Jubany/Argentina Stn	89053	817	18	0.02
Progress/Russian Federation Stn	89574	863	0	0
Rothera Point/UK Stn	89062	864	0	0
Mawson/Australia Stn	89564	864	0	0
Base Marambio	89055	813	0	0
Fossil Bluff/UK Stn	89065	776	0	0
Novolazarevskaja/Russian Federation Stn	89512	867	0	0
Maitri/India Stn	89514	825	0	0
Base Esperanza/Argentina Stn	88963	816	16	0.02
Base San Martin/Argentina Stn	89066	808	0	0
Base Belgrano II/Argentina Stn	89034	818	0	0
Palmer Station/US Stn	89061	867	0	0